

EN: Th is Datasheet is presented by the manufacturer .

Please v isit our website for pr icing and availabilit y at www.hest ore.hu.

http://www.hestore.hu/

WTϯϮ-ETHϬϭ

Getting Started Guide for AWS IoT Core

Table of Contents

1 Document information ...1

2 Overview ...1

3 Hardware description ...2

4 Set up your development environment ..3

5 Set up device hardware ..4

6 Setup your AWS account and permissions ...7

7 Create resources in AWS IoT ..7

8 Provision the device with credentials ..7

9 Build the demo ...8

10 Run the demo ...8

11 Verify messages in AWS IoT Core ..8

12 Troubleshooting ...8

1 Document information

1.1 Document revision history
Date Modified by Description

October 21, 2024 Vans First release

1.2 Applicable operating systems for this guide

This guide is applicable to the ESP32 series chips with FreeRTOS system. It adopts ESP-IDF, an

Internet of Things operating system independently developed by Espressif.

2 Overview
WT32-ETH01 is an embedded serial port to Ethernet module based on the ESP32 series

launched by Wireless-tag Technology Co., Ltd. The module internally integrates an optimized

TCP/IP protocol stack, which makes it easy for users to complete the networking function of

embedded devices and greatly reduces the development time cost. The WT32-ETH01 can easily

and quickly connect to AWS IoT Core.

Moreover, the module is compatible with half pad and connector through-hole designs. The

board width is a universal width. The module can be directly soldered on the board, or a

connector can be soldered, or it can also be used on a breadboard, making it convenient for users

to use in different scenarios.

 The ESP32 series IC is a SoC that integrates 2.4GHz Wi-Fi and Bluetooth dual-mode. It has

ultra-high radio frequency performance, stability, versatility and reliability, as well as ultra-low

power consumption.

3 Hardware description

3.1 Datasheet

The link to the product datasheet: https://en.wireless-tag.com/product-item-2.html.

3.2 Standard kit contents

The contents of the standard shipping hardware package as indicated below:

• ESP32 module: WT32-S1, with 32Mbit flash onboard

• A highly integrated Ethernet transceiver: LAN8720A

• Network port: RJ45, 10/100Mbps

• Debug port: UART

• Power supply: 5V or 3.3V TTL

• Packing: Half pad/ Through-hole connector (Optional)

Please links to the page on our company website for more detail:

https://en.wireless-tag.com/product-item-2.html.

3.3 User provided items

A USB-to-TTL serial debugging tool is needed for development.

3.4 3rd party purchasable items

None.

3.5 Additional hardware references

4 Set up your development environment

4.1 Tools installation (IDEs, Toolchains, SDKs)

.

1. IDE based

⚫ Eclipse Plugin

⚫ VSCode Extension

⚫ Arduino

2. idf.py

The idf.py command-line tool provides a front-end for easily managing your project

builds, deployment and debugging, and more. It manages several tools, for example:

⚫ CMake, which configures the project to be built.

⚫ Ninja, which builds the project.

⚫ Esptool.py, which flashes the target.

Can read more about configuring the build system using idf.py here.

3. ESP-IDF

For the manual procedure, please select according to your operating system.

⚫ Windows Installer

⚫ Linux and macOS

4. Optimizing the compiler

In ESP-IDF, you can force compiler optimization by modifying the compiler options. You can set

the compiler optimization options in the CMakeLists.txt file.

In your project's CMakeLists.txt file, add the following lines to set the compiler optimization

options
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -O3")

set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -O3")

5. SDK

ESP-IDF , A tutorial on setting up the sdk environment can be found in the Getting Started guide.

ESP-IDF is Espressif’s official IoT Development Framework for the ESP32, ESP32-S, ESP32-C

and ESP32-H series of SoCs.

It provides a self-sufficient SDK for any generic application development on these platforms,

using programming languages such as C and C++.

4.2 Additional software references

ESP32 Chip Manual - Provides specifications for the ESP32 chip

ESP-IDF Programming Guide for ESP32 – Extensive documentation for the ESP-IDF

evelopment framework

https://github.com/espressif/idf-eclipse-plugin/blob/master/README.md
https://github.com/espressif/vscode-esp-idf-extension/blob/master/README.md
https://github.com/espressif/arduino-esp32/blob/master/README.md
https://cmake.org/
https://ninja-build.org/
https://github.com/espressif/esptool/#readme
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-guides/tools/idf-py.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/get-started/windows-setup.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/get-started/linux-macos-setup.html
https://github.com/espressif/esp-idf
https://docs.espressif.com/projects/esp-idf/en/latest/esp32s3/get-started/index.html
https://en.wireless-tag.com/product.html
https://en.wireless-tag.com/product.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/get-started/index.html

5 Set up device hardware

5.1 Product Images

5.2 Pin Description

Pin Name Description

1 EN Reserved debugging/burning interface; Active-high enable

2 GND Reserved debugging/burning interface; GND

3 3V3 Reserved debugging/burning interface; 3V3

4 TXD Reserved debugging/burning interface; IO1, TXD0

5 RXD Reserved debugging/burning interface; IO3, RXD0

6 IO0 Reserved debugging/burning interface; IO0

Table 1 Debugging/Burning Interfaces

Pin Name Description

1 EN Active-high enable

2 CFG Reserved debugging/burning interface; GND

3 485_EN IO17, TXD2

4 TXD IO33, RS485 Enable pin

5 RXD IO5, RXD2

6 GND GND

7 3V3 3V3 Power supply

8 GND GND

9 5V 5V Power supply

10 LINK Network connection indicator pin

11 GND GND

12 IO39 IO39, Input only

13 IO36 IO36, Input only

14 IO15 IO15

15 IO14 IO14

16 IO12 IO12

17 IO35 IO35, Input only

18 IO4 IO4

19 IO2 IO2

20 GND GND

Table 2 : IO Descriptions

Note 1: The module enables high level by default.

Note 2: Power supply makes a binary choice between 3V3 and 5V.

Note 3: IO39, IO35 and IO36 only support input.

5.3 Power Supply Characteristics

1. Supply Voltage

You can make a binary choice between 3V3 and 5V for power supply voltage of the module.

2. Power Supply Modes

Users can choose from the following modes flexibly according to their needs:

1) Through hole (Welding pins):

⚫ Power supply with Dupont line connection;

⚫ Power supply with breadboard connection;

2) Half pad (Directly welded to the board): Power supply of user board.

5.4 Boot Configurations

The chip can be configured with the following startup parameters via the Strapping pin at power-

up or hardware reset.

Strapping pin: GPIO0 and GPIO2

Strapping Pin Default Configuration Bit Value

GPIO0 Pull-up 1

GPIO2 Pull-down 0

Default Configuration of Strapping Pins

The timing of signals connected to the strapping pins should adhere to the setup time and hold

time specifications in Table and Figure.

Parameter Description Min (ms)

tSU Setup time is the time reserved for the power rails to stabilize before

the CHIP_PU pin is pulled high to activate the chip

0

tH Hold time is the time reserved for the chip to read the strapping pin

values after CHIP_PU is already high and before these pins start

operating as regular IO pins.

3

Description of Timing Parameters for the Strapping Pins

Visualization of Timing Parameters for the Strapping Pins

 Boot Mode GPIO0 GPIO2

SPI Boot Mode 1 Any value

Joint Download Boot Mode 0 0

Chip Boot Mode Control
Bold marks the default value and configuration.

5.5 LED Instructions

⚫ LED1: Power light, when the power supply is normal, the indicator light is on;

⚫ LED3: Serial port indicator, RXD2(IO5) When there is data flow, the indicator light is on;

⚫ LED4: Serial port indicator, TXD2(IO17) When there is data flow, the indicator light is on;

6 Setup your AWS account and permissions

If you do not have an existing AWS account and user, refer to the online AWS documentation at

Set up your AWS Account. To get started, follow the steps outlined in the sections below:

• Sign up for an AWS account

• Create an administrative user

• Open the AWS IoT console

Pay special attention to the Notes.

7 Create resources in AWS IoT

Refer to the online AWS documentation at Create AWS IoT Resources. Follow the steps

outlined in these sections to provision resources for your device:

• Create an AWS IoT Policy

• Create a thing object

Pay special attention to the Notes.

8 Provision the device with credentials

During “Create a thing object”, you will encounter the requirement to download the certificate in
the last step, as shown below, keep it, which is the corresponding server certificate of the device.

https://docs.aws.amazon.com/iot/latest/developerguide/setting-up.html
https://docs.aws.amazon.com/iot/latest/developerguide/setting-up.html#aws-registration
https://docs.aws.amazon.com/iot/latest/developerguide/setting-up.html#create-an-admin
https://docs.aws.amazon.com/iot/latest/developerguide/setting-up.html#iot-console-signin
https://docs.aws.amazon.com/iot/latest/developerguide/create-iot-resources.html
https://docs.aws.amazon.com/iot/latest/developerguide/create-iot-resources.html#create-iot-policy
https://docs.aws.amazon.com/iot/latest/developerguide/create-iot-resources.html#create-aws-thing

9 Build the demo
This tutorial uses the esp-idf/example/protocol/mqtt/ssl_mutual_auth example to test the device's

connection to AWS-IoT-Core.

9.1 Engineering Configuration

1. After entering the project, you need to replace the three certificates in the main directory.

The certificates to be replaced are stored in the connection toolkit you downloaded earlier.

The replacement corresponds to the following:

⚫ The .client.crt file is the client certificate; use the .pem.crt file instead.

⚫ The .client.key file is the client key; use the .private.pem.key file instead.

⚫ The .mosquitto.org.crt file is the server-side secret key; use the CA1.pem file instead.

2. Replace the link to the mqtt server accessed by the project and add the client_id

configuration entry.The link is replaced with the link used when connecting to the device,

and the client_id used “basicPubSub”.

Note: The link needs to be prefixed with mqtt://

3. Activate the IDF environment, configure the chip as ESP32 and modify the WiFi

configuration information of the project via menuconfig.

Note: Configuration path for WiFi configuration: Connection Configuration Example

->WiFi SSID / WiFi Password

10 Run the demo
Take the project introduced in the previous chapter, burn it into your device, and open the serial

port debugging assistant.

11 Verify messages in AWS IoT Core
Open “MQTT test cilent”, set the Subscribe topic to “sdk/test/python” and click “Subscribe”.
button.

12 Troubleshooting
If the connection fails when connecting to mqtt, it is recommended to check whether the above

steps have been completed, whether the client_id and uri have been correctly modified, and

whether the certificate has been correctly replaced.

If there is something you don't understand, you can also refer to the AWS online documentation

on Troubleshooting AWS IoT.

https://us-east-1.console.aws.amazon.com/iot/home?region=us-east-1#/connectdevice
https://us-east-1.console.aws.amazon.com/iot/home?region=us-east-1#/test
https://docs.aws.amazon.com/iot/latest/developerguide/iot_troubleshooting.html

