EN: This Datasheet is presented by the manufacturer.

Please visit our website for pricing and availability at www.hestore.hu.

http://www.hestore.hu/

CAN-BUS Shield V2.0

Introduction

CAN-BUS is a common industrial bus because of its long travel distance, medium
communication speed and high reliability. It is commonly found on modern machine tools, such

as an automotive diagnostic bus.

This CAN-BUS Shield adopts MCP2515 CAN Bus controller with SPI interface and MCP2551 CAN
transceiver to give your Arduino/Seeeduino CAN-BUS capability. With an OBD-II converter cable
added on and the OBD-II library imported, you are ready to build an onboard diagnostic device

or data logger.

Previously we have made two versions of CAN-BUS Shield, the V1.0 and V1.2. They are all
awesome shields that widely liked by our users. In order to make it better, several months ago
we conducted a survey about CAN-BUS Shield V1.2 and received many valuable advices (Thanks
to all the users who replied to us), so we decided to make an update and here it is - CAN-BUS
Shield V2.

Version

This document applies to the following version of products:

Version Released Date
CAN BUS Shield V1.0 Oct 14, 2012
CAN BUS Shield V1.1 Aug 10, 2013
CAN BUS Shield V1.2 Jan 05, 2015
CAN BUS Shield V2.0 Aug 01,2017
Version Tracker
Features V1.2 V2.0

CAN-BUS Controller

MCP2515

MCP2515

CAN Transceiver

MCP2551

MCP2551

Default OBD Pinout

OBD-Il Standard

OBD-Il Standard

CAN Standard Pinout

Not compatible

Compatible (jumper)

INT Pin

Not changeable

D2 or D3 (jumper)

CS pin for TF card slot

No TF card slot

D4 or D5 (jumper)

Features V1.2 V2.0
Serial Grove DO/D1 AO0/A1
I12C Grove A4/A5 SDA/SCL
Grove Orientation Vertical Horizontal
P1 pad Front of the shied Back of the shield

What’s new in CAN BUS Shield V2.0

Hardware

OBD-Il or CAN standard pinout can be selected by switching jumpers on DB9 interface, the default pinout is
OBD-II.

Add a TF card slot for data storage and the CS pin can be either set to D4 or D5.

The INT pin can be set to D2 or D3 by switching jumpers on the back of the shield.

Moved the P1 pad from front to the back of the shield to make it easier to cut and solder.

Consider that the DO/D1 pin are usually used for downloading code, we changed the serial Grove connector
to pin AO/A1.

The 12C grove connector is also changed to more reasonable standard SDA/SCL pin instead of previous A4/A5.
The two grove connectors are both changed to horizontal rather than vertical to the shield so that it would
be more convenient when connecting to other grove modules.

Software

Add the function and example to access the data of your car.
Add the function to read the SD card.

Add the example to store the data of your car into the SD card.
Fix some bugs and optimize some program.

D-Sub CANbus PinOut

pin# Signal names Signal Description
1 Reserved Upgrade Path
2 CAN_L Dominant Low
3 CAN_GND Ground
4 Reserved Upgrade Path
5 CAN_SHLD Shiled, Optional
6 GND Ground, Optional
7 CAN_H Dominant High
8 Reserved Upgrade Path
9 CAN_V+ Power, Optional

What if | want to connect this shield to my car

If you want to read data or control your car, there’s an OBD>DB9 cable available for you, this
cable make easier to connect to OBD-connector and DB9-connector. This cable will also work

with anything that has a OBD-connector. Add a power switch makes such a satisfying click.

USB-CAN Analyzer

If you want a CAN Bus Analyzer to debug your CAN Bus, this USB-CAN Analyzer is

recommended.

Features

Implements CAN V2.0B at up to 1 Mb/s

Industrial standard 9 pin sub-D connector

OBD-Il and CAN standard pinout selectable.

Changeable chip select pin

Changeable CS pin for TF card slot

Changeable INT pin

Screw terminal that easily to connect CAN_H and CAN_L
Arduino Uno pin headers

2 Grove connectors (12C and UART)

SPI Interface up to 10 MHz

Standard (11 bit) and extended (29 bit) data and remote frames
Two receive buffers with prioritized message storage

CAN BUS Shield Work well with Arduino UNO (ATmega328), Arduino Mega (ATmega1280/2560)
as well as Arduino Leonardo (ATmega32U4).

Hardware Overview

DB9 Interface - to connect to OBDII Interface via a DBG-OBD Cable.
V_OBD - It gets power from OBDII Interface (from DB9)

Led Indicator:

PWR: power

TX: blink when the data is sending

RX: blink when there’s data receiving

INT: data interrupt

Terminal - CAN_H and CAN_L

Arduino UNO pin out

Serial Grove connector

12C Grove connector

ICSP pins

IC - MCP2551, a high-speed CAN transceiver (datasheet)

10. IC - MCP2515, stand-alone CAN controller with SPI interface (datasheet)
11. SD card slot

When you use more than two CAN Bus Shield in one net, you should take the impedance into

©ONOUROOO O WNE

consideration. You should either cut P1 in the PCB with a knife, or just remove R3 on the PCB.

Pin map

Pinmap of CAN_BUS

D3 —— INTB
D2 —— INTA
o —
po/Rx —— [T

e o e RST 5CK MISO
oo wost G

The FREE pin is available for the other usages.

DB9&OBDii Interface

CS_CAN pin

SPI_CS pin of V2.0 is connected to D9 by default. If you want to change to D10, please follow

below instructions.

e Stepl: Take a look at the backside of the PCBA, you will find a pad named CS_CAN.

ni. v

a"1o8
Erpelei it

¥

.‘l’ e frl.

g a9%9aN
* *099

3 '

e Step2: Cut the wire between pad9 and the middle pad.

T e

<

e Step3:Weld the middle pad and pad 10.

Be careful with the box cutter, it’s easy to hurt yourself or the PCBA.

INT pin

INT pin of V2.0 is connected to D2 by default. If you want to change to D3, please follow below

instructions.

e Stepl: Take a look at the backside of the PCBA, you will find a pad named INT.

|10 1

M SCK

e Step2: Cut the wire between pad 2 and the middle pad.

e Step3:Weld the middle pad and pad 3.

Weld the middle
pad and pad 3

SPI pins

The SPI pins (SCK, MISO, MOSI) are routed to the ICSP pins by default. But for some boards, the
SPI pins are located at D11~D13. if this happens, you need make some change to the PCBA.
Take a look at the backside of the PCBA, there’re three pads, MOSI, MISO and SCK, they are

connected to A by default. You can change them to B if needed.

For Arduino UNO, Arduino Mega, Arduino Leonardo and any others AVR based Arduino boards,
it works well by default setting.

Be careful when you are going to change SPI pins, it’s easy to hurt yourself or the PCBA.

Getting Started

Here’s a simple example to show you how CAN-BUS Shield works. In this example we need 2

pieces of CAN-BUS Shields as well as Arduino or Seeeduino.

This example is built under Arduino IDE version 1.6.9.

STEP1: What do we need

Name Function Qty
CAN-BUS Shield CAN Bus communication 2
Seeeduino V4.2 Controller 2
Jumper Wire connection 2

STEP2: Hardware Connection

Insert each CAN-BUS Shield into Seeeduino V4.2, and connect the 2 CAN-BUS Shield together

via 2 jumper wires. Shown as below images.

DD

(D DI

LU
(2

RIZCLEP ¢ B EOIIIIICIAST S
jDoocoooo moeococcooool®
@ILCeare BEITIDICIES S
{Dooooccooimcocococooool®

fcococconiaeococee

TTT0 VNOBBY RER "
icoooon A000OO0O
s P CL T 0 VNONME BB E "

M Slaver

CAN_H to CAN_H, CAN_Lto CAN_L
STEP3: Software
Please follow how to install an arduino library procedures to install CAN BUS shield library.

Click on below button to download the library.

http://wiki.seeed.cc/How_to_install_Arduino_Library/

Download CAN BUS Shield Library

https://github.com/Seeed-Studio/CAN_BUS_Shield
Install the library to your Arduino IDE when it is downloaded.

One of the node (a node means Seeeduino + CAN_BUS Shield) acts as master, the other acts as

slaver. The master will send data to slaver constantly.

Each node can act as master before the code being uploaded.

Open the send example (File > Examples > CAN_BUS_Shield-master > send) and upload to the

master.

3 amuhnmsm Sketch Tools Help

L) New A | Arduing 1.6.9

HelioWorld

=W

Firmata
#S | pobot Control

0S| Robot Motor

fasp | SO
®»e | SoftwareSerial
4 SP
" Temboo
Wire
RETIRED

YYYYYYVYYYYYYY

Accelerometer_H3LIS331DL-master
Ardulno Learning Board
Arduino Twitter Library
Arduino-Websocket-Fast
Blynk
BTLE H
receive Bk
dht11 receive_check
ESPB266 Weather Station receive_interrupt
ESP8266.Simple-master [seoa -~ |
GSM send_Blink
IRremote send_Blink_ROS
da net Keypad set_mask_filter_recv
LCDMenuLib set_mask_filter_send

Yy vyYYFTYyrreyy

YWY

Open the receive_check example (File > Examples > CAN_BUS_Shield-master > receive_check)
and upload to the slaver.

Arduino m Edit Sketch Tools Help
000 New N a
Open... 3O =
: 5 ;Hrmmnrﬂbwy
Sketchbook

HelioWorld >

Esplora
Ethernet
Ciose #W! Eimata

Save #S
Robot Control
Save As... 0#S Robot Motor

PageSetup 03P | SO
tel print %P SoftwareSerial

- o 4 SPI
Hello World to the Temt
Wire
RETIRED

YTYY Y Y YYYYYYYY

Accelerometer_H3LIS331DL-master
Arduino Learning Board

Arduino Twitter Library
Arduino-Websocket-Fast

CAN_BUS_Shield-master
dht11

ESP8266 Weather Station
ESP8266_Simple-master
GSM

IRremote

receive_Blink

receive_interrupt
send

send_Blink
send_Blink_ROS
set_mask_filter_recv
set_mask_filter_send

Y Y Y Y VYYYAIYYYYYY

Keypad
LCDMenuLib

STEP4: View Result

Open the Serial Monitor of Arduino IDE(slaver), you will get the data sent from the master.

o) COMS (Arduino Uno) - olEH

4 Semd
| al
[Get duts frem 1D ©

lo H 2 3 4 5 &

{Ger date frem 1D O
10 1 2 3 4 5]

[Ger date frem ID: O

|0] 2 3 4 H 6

;L‘n! dars frem 1D O
fo 1 2 3 4 5 [
loat data frem 102 0
’.l H 2 3 4 5 L

|Ger dute Erem 1D O

lo 1 2 3 4 5

-

1ot data frea 10 O

o 1 2 2 p 5 [

{Got date frem IV O

10] 2 3 4 5 L]

(Ger date frem I 0

lo b 2 3 4 5]

v

¥ Auteserall He lise snding v 115200 baud v

APIs

1. Set the Baud rate

This function is used to initialize the baud rate of the CAN Bus system.

The available baud rates are listed as follows:

ine CAN_5KBPS
ine CAN_10KBPS
ine CAN_20KBPS
ine CAN_25KBPS
ine CAN_31K25BPS
ine CAN_33KBPS

ine CAN_40KBPS

ine CAN_50KBPS

ine CAN_80KBPS

ine CAN_83K3BPS

ine CAN_95KBPS

ine CAN_100KBPS 12

ine CAN_250KBPS 1

2. Set Receive Mask and Filter

~Njojuil s

There are 2 receive mask registers and 5 filter registers on the controller chip that guarantee
you getting data from the target device. They are useful especially in a large network consisting
of numerous nodes.

We provide two functions for you to utilize these mask and filter registers. They are:

Mask:

init Mask(unsigned char num, unsigned char ext, unsigned char ulData);

Filter:

init Filt(unsigned char num, unsigned char ext, unsigned char ulData);

num represents which register to use. You can fill 0 or 1 for mask and 0 to 5 for filter.

ext represents the status of the frame. 0 means it’s a mask or filter for a standard frame. 1 means it’s for a
extended frame.

ulData represents the content of the mask of filter.

3. Check Receive

The MCP2515 can operate in either a polled mode, where the software checks for a received

frame, or using additional pins to signal that a frame has been received or transmit completed.

Use the following function to poll for received frames.

MCP_CAN: : checkReceive(void);

The function will return 1 if a frame arrives, and 0 if nothing arrives.

4. Get CAN ID

When some data arrive, you can use the following function to get the CAN ID of the “send”
node.

INT32U MCP_CAN:: (void)

5. Send Data

CAN (INT8U id, INT8U ext, INT8U len, data buf);

It is a function to send data onto the bus. In which:

id represents where the data comes from.

ext represents the status of the frame. ‘0’ means standard frame. ‘1’ means extended frame.
len represents the length of this frame.

data_buf is the content of this message.

For example, In the ‘send’ example, we have:

(@ (0x00, 0, 8, stmp);

6. Receive Data

The following function is used to receive data on the ‘receive’ node:

Q)

AN (unsigned char len, unsigned char buf);
In conditions that masks and filters have been set. This function can only get frames that meet

the requirements of masks and filters.

len represents the data length.
buf is where you store the data.

Generate a New BaudRate

We had provided many frequently-used baud rates, as below:

ine CAN_5KBPS

ine CAN_10KBPS
ine CAN_20KBPS
ine CAN_25KBPS

ine CAN 31KBPS
ine CAN 33KBPS
ine CAN_40KBPS
ine CAN_5@KBPS

ine CAN_80KBPS
ine CAN_83KBPS
ine CAN_95KBPS

ine CAN_100KBPS
ine CAN_125KBPS
ine CAN_200KBPS
ine CAN 250KBPS
ine CAN_500KBPS
ine CAN_666KBPS
ine CAN 100@KBPS 1

IR

=
W

]
S

I
191

]
o)}

=
~|

]

~

<
0]
—~
<
o
[en
3
Q
<
(%]
=
O
Q
)
—~+
=
>
o
[
>
(¢
=
o))
—+
)
<
o
e
3
[})
)
—
I
(1)
=
()
3
(¢
e
=
(e}
<
[oF
)
[«})
(%
o
=
3
[3)
=
(¢
(g
o
>
®
©
<
o
[en
(g
o

o
=
(@]
=
)
—+
™
—
>
I}
o
by}
c
S
-
Q)
~+
™

<
o
c
>
®
®
a

Click here to download the software, it’s in Chinese, but never mind, it’s easy to

use.https://github.com/SeeedDocument/CAN_BUS_Shield/raw/master/resource/CAN_Baudrate_CalcV1.3.zip
o CAN 52138 V1.3 by Adawin -
CAN B it 8 ‘ Adawin 7= Hahik

CaN B RGE I e
FRRE & Select mep2515

uJ

s Eluum-um HRAT LA AR L AR | 48 & MOP2515 3 clgse
. baudrate error range . *
; i o *H |
E#ii’ﬁ S RiRAE EFHEEE | R EET
|125 YI Kbps 16 - MHz 1 - s 'H'H |
real baud rate ;
o |[cwF | oz | o |l oo FHALE | TEERE| . o
S (Hex) | (Hex) | (Hex) RERE S e Sampling\l’oints Ebp= RE CaICUIate
L3 [B & 6177 BE. 7% | 17500 | 0 0000%
2 3 B8 5 16: B2 B0% 175,00 0. 0000%
W o soo ooy SITOT
4 RN S 1g (62.50% | 12500 | 0.0000%
5 i | B 4 || 18EZES5 68. 75% | 12500 | 0 0000%
5 3 A2 G .‘-L 613607 gﬁ. 5% dZS 00 | 0.0000%
Tl s w5 | eres Whakwss NS oo
g 3 B2 4 S| 68 e | 12500 | 0.0000%
S 3 Bh 3 4 75.00% | 125.00 | 0.0000%
10 3 9B & i 56.25% | 12500 | 0. 0000%
11 3 A3 & i 62.B0% 12600 | 0.0000%
12 3 AB 4 5 68, TE% | 12500 | 0.0000%
13 3 B3 3 4 75, 00% | l2k.00 | 0. 0000%
14 3 bil i 2 3 a1, 25% . l2s.00 | 0.0000%
15 i 9 A T 56, 25% 125.00 0. 0000% ¥

This software supports Windows system only. If you can’t open it, please feel free to contact

loovee@seeed.cc for support.

Open the software, what you need to do is to set the baud rate you want, and then do some

simple setting, then click calculate.
Then you will get some data, cfgl, cfg2 and cfg3.
You need to add some code to the library.

Open mcp_can_dfs.h, you need to add below code at about line 272:

ine MCP_16MHz_xxxkBPS CFG1l (cfgl)
ine MCP_16MHz_xxxkBPS_ CFG2 (cfg2)
ine MCP_16MHz_xxxkBPS CFG3 (cfg2)

Then let’s go to about line 390, add below code:

ine CAN_xxxKBPS NUM // xxx 1s the baudrate you need, and NUM is a number, you need to get d|

Open mcp_can.cpp, goto the function mcp2515_configRate(at about line 190), then add below

code:

case (CAN_xxxKBPS)

cfgl = MCP_16MHz_xxxkBPS_CFG1

cfg2 = MCP_16MHz_xxxkBPS_CFG2;
cfg3 = MCP_16MHz_xxxkBPS_CFG3;

Then you can use the baud rate you need. And please give me a pull request at github when

you use a new rate, so | can add it to the library to help other guys.

Projects

If you want to make some awesome projects with CAN-BUS shield, here are some projects for

reference.

Volkswagen CAN BUS Gaming

Ever wanted to play a car/truck simulator with a real dashboard on your PC? Me too! I’'m trying
to control a VW Polo 6R dashboard via CAN Bus with an Arduino Uno and a Seeed CAN Bus
Shield. Inspired by Silas Parker. Thanks Sepp and IsO-Mick for their great support!

Hack your vehicle CAN-BUS

Modern Vehicles all come equipped with a CAN-BUS Controller Area Network, Instead of having
a million wires running back and forth from various devices in your car to the battery, its

making use of a more clever system.

All electronic functions are connected to the TIPM, (Totally integrated Power Module), such as
solenoids/relays to lock the doors or mini motors to wind the windows etc.

From each node (IE Switch pod that controls your windows or electric door locks) it broadcasts

a message across the CAN. When the TIPM detects a valid message it will react accordingly like,
lock the doors, switch on lights and so on.

FAQ

Q1: | can’t get data from other CAN device.

e Check if the connection is right
e Check if the baud rate setting is right

Q2: The serial monitor print Init Fail.

Check if the CS pin setting is matched with the code. For CAN Bus Shield V1.1/1.2, CS pin is connected to D9,
others are to D10.

Q3. Where can | find technical support if | have some other issues.
You can post a question to Seeed Forum or send an email to techsupport@seeed.cc.

Help us make it better

Welcome to the new documentation system of Seeed Studio. We have made a lot of progress
comparing to the old wiki system and will continue to improve it to make it more user friendly
and helpful. The improvement can't be done without your kindly feedback. If you have any
suggestions or findings, you are most welcome to submit the amended version as our
contributor via Github or give us suggestions in the survey below, it would be more appreciated

if you could leave your email so that we can reply to you. Happy Hacking!

