

EN: This Datasheet is presented by the manufacturer.

Please visit our website for pricing and availability at <u>www.hestore.hu</u>.

Five-pin soil multi-parameter sensor (485 type)

SN-300 2-TR-*-N01 Ver 2 .0

catalogue

Chapter 1 Product Introduction
1.1 Product Overview
1.2 Functional features4
1.3 Main parameters4
1.4 System framework diagram
1. Product selection
Chapter 2 Hardware connections
2.1 Inspection before equipment installation
2.2 Interface description
2.2.1 Sensor wiring
Chapter 3 Usage
3.1 Speed test method
3.2 Ground measurement method
3.3 Precautions
Chapter 4 Configuration software installation and use
4.1 Sensor access to computer
4.2 Use of sensor monitoring software
Chapter 5 Communication Protocols
5.1 Basic communication parameters
5.2 Definition of data frame format
5.3 Register address
5.4 Example and explanation of communication protocol
Chapter 6 Common Problems and Solutions
6.1 Pay attention to no output or output error

Chapter 1 Product Introduction

1.1 Product Overview

This product features stable performance, high sensitivity, fast response, and stable output, making it suitable for various soil types. It is an essential tool for observing and studying the occurrence, evolution, improvement, and water-salt dynamics of saline soils. By measuring the dielectric constant of soil, it can directly and stably reflect the true moisture content of various soils. It can measure the volume percentage of soil moisture, which is in line with current international standards for soil moisture measurement methods. The device can be buried long-term in the soil, resistant to prolonged electrolysis and corrosion, and is vacuum-sealed for complete waterproofing.

Suitable for soil moisture monitoring, scientific experiments, water-saving irrigation, greenhouses, flowers and vegetables, grassland and pasture, soil rapid testing, plant culture, sewage treatment, precision agriculture and other occasions of temperature and humidity, conductivity and PH value testing.

1.2 Functional features

■ Low threshold, few steps, quick measurement, no reagent required, no limit of detection times.

■ The electrode is made of specially treated alloy material, which can withstand strong external impact and is not easy to damage.

■ Fully sealed, acid and alkali corrosion resistant, can be buried in the soil or directly put into the water for long-term dynamic testing.

■ High precision, fast response, good interchangeability, probe insertion design to ensure accurate measurement and reliable performance.

■ Can also be used for the conductivity of integrated water and fertilizer solutions, as well as other nutrient solutions and substrates.

1.3 Main parameters

DC power supply (default)	DC 4.5-30V
maximum power	0.5W(24VDC supply)
dissipation	0.5 W (24 V DC supply)

working temperature	-20°C~+60°C			
The kernel chip is heat	85℃			
resistant	85 0			
stabilization time	≤5min			
	range	0-20000 µ S/cm		
	resolution	1 u S/om		
	ratio	1 µ 3/cm		
Conductivity parameter		The range of 0-10000 μ S/cm is $~\pm$		
	Typical	3%FS; the range of 10000-20000 μ		
	accuracy	S/cm is \pm 5%FS;		
		(Brown soil, 60%,25°C)		
	range	0-100%		
	resolution	0.10/		
	ratio	0.1%		
Soil moisture parameters		0-50% \pm 2%, @ (brown soil,		
		30%,25°C)		
	accuracy	50-100% \pm 3%, @ (brown soil,		
		60%,25°C)		
	range	-40~80°C		
Soil temperature	resolution	P osolution: 0.1°		
parameters	ratio			
	accuracy	±0.5°C (25°C)		
	range	3~9PH		
Soil PH parameter	resolution	0.1		
	ratio	0.1		
Nitrogen, phosphorus,	range	0-2999 mg/kg(mg/L)		
potassium parameters	resolution	1 ma/ka(ma/I)		
(Measured by national	ratio			
standard instrument and	Typical \leq 5% (subject to actual measuring			
input)	accuracy instrument)			
Conductivity temperature	Built-in te	mperature compensation sensor, compe		
compensation	nsation range 0-50°C			
levels of protection	IP68			
Pin insertion material	Corrosion resistant special electrode			

sealing material	Black flame retardant epoxy resin		
The default apple length	2 m, cable length can be customized according to		
The default cable length	requirements		
outline dimension	45*15*123mm		
output signal	RS485 (Mod Bus protocol)		

Note: The performance data stated above are obtained under test conditions using our test system and software. To continuously improve the product, we reserve the right to change the design functions and specifications without further notice.

Shell size

Equipment size diagram (unit: mm)

1.4 System framework diagram

This product can also combine multiple sensors on one 48 5 bus. Theoretically, one bus can support up to 254485 sensors. At the other end, connect a PLC with a 48 5 interface, or link to a microcontroller via a 48 5 interface chip. Alternatively, use a USB-to-48 5 adapter to connect to a computer. Configuration and testing can be performed using the sensor configuration tool provided by our company (when using this configuration software, only one device can be connected).

多接

1. Product selection

SN-					Company code
	300				
	2-				
		TR-			Soil testing casing
			NPKPH-		nitrogen phosphorus and potassium
					РН
			TH NPK PH-		Temperature, water, nitrogen,
					phosphorus, potassium and PH
			ECNPKPH-		Conductivity nitrogen phosphorus
					potassium PH
			ECTHNPKPH-		Conductivity temperature water
					nitrogen phosphorus potassium PH
				N01	RS485 (Mod Bus-RTU protocol)

Chapter 2 Hardware connections

2.1 Inspection before equipment installation

equipment list:

1 set of equipment

Certificate of conformity, wiring description, etc

■USB to 485 (optional)

2.2 Interface description

The wide voltage power supply input can be 4.5~30V. When wiring the 485 signal line, pay attention to that A/B lines should not be connected in reverse, and the addresses of multiple devices on the bus should not conflict.

Line color	explain	remarks
brown	Power is positive	4.5~30V DC
black	Power ground	GND
yellow	485-A	485-A
blue	485-B	485-B

2.2.1, sensor wiring

Chapter 3 Usage

Due to the electrodes directly measuring the conductivity of soluble salt ions in the soil, the soil moisture content must be above about 20% for the soluble ions to accurately reflect the soils conductivity. Over long-term observations, measurements taken after irrigation or rainfall are closer to the true levels. For quick tests, water can be applied to the soil first, and measurements taken once the water has fully penetrated.

If measuring on a relatively hard surface, drill a hole first (the hole diameter should be smaller than the probe diameter), then insert the probe into the soil and compact it before measuring; the transmitter should be protected from violent vibrations and impacts, and must not be struck with hard objects. Since the transmitter is black-coated, it can rapidly heat up under intense sunlight (up to 50°C or more). To prevent excessive temperature from affecting the temperature measurement of the transmitter, please take precautions against direct sunlight and protection when using it in fields or outdoors.

3.1 Speed test method

Select the appropriate measurement location, avoid the stone, ensure that the steel

needle does not touch the hard object, throw away the surface soil according to the required measurement depth, keep the original looseness of the soil below, hold the sensor vertically inserted into the soil, do not shake left and right when inserting, it is recommended to measure multiple times in a small range of a measurement point to obtain the average value.

3.2 Ground measurement method

The pit with a vertical excavation diameter>20cm is inserted horizontally into the pit wall at the predetermined depth, and the pit is filled in firmly. After a period of time, continuous measurement and recording can be carried out for several days, months or even longer.

3.3 Precautions

1. The steel needle must be fully inserted into the soil during measurement.

2. Avoid direct exposure to strong sunlight to cause high temperature of the transmitter. Pay attention to lightning strike in field use.

3. Do not bend the steel needle violently, do not pull the transmitter lead wire forcefully, do not drop or strike the transmitter violently.

4. The transmitter protection level IP68 can immerse the transmitter in water.

5. Due to the presence of radio frequency electromagnetic radiation in the air, it is not advisable to be in an electric state for a long time in the air.

Chapter 4 Configuration software installation and use

Our company provides the supporting "485 parameter configuration software", which can easily use the computer to read the parameters of the sensor, and flexibly modify the device ID and address of the sensor.

Note that when using software automatic acquisition, it is necessary to ensure that there is only one sensor on the 485 bus.

4.1 Sensor access to computer

After connecting the sensor to the computer via USB to 485 and providing power, you can see the correct COM port in the computer ("My Computer-Properties-Device Manager-Ports" to view the COM port).

Open the data package, select "Debug software" --- "485 parameter configuration

software", find open. 485666484

If you do not find a COM port in the device manager, it means that you have not installed a USB to 485 driver (in the package) or have not installed the driver correctly. Please contact a technician for help.

4.2 Use of sensor monitoring software

① The configuration interface is shown in the figure. First, obtain the serial port number according to the method in Chapter 3.1 and select the correct serial port.

(2) Click the test baud rate of the software, and the software will test the current devices baud rate and address. The default baud rate is 4800bit/s, and the default address is 0x01.

③ Modify the address and baud rate according to the use needs, and query the current function status of the device.

④ If the test fails, please check the equipment wiring and 485 drive installation again.

	Loono I	and the states of a	1
请选择串口号:	Icowa 🔺	则此放特革]
设备地址:	1		设置
设备波特率:	4800		设置
温度值:		查询	
湿度值:		查询	
水浸状态:			
断电状态:		查询	
光照序。3803			争数设定
遥信输出延时 译信常五世问23	设备地址:1 波	: 特率:4800	设置
还信输出延时 适信常开常闭设置 湿度上印 湿度下时	设备地址:1 波	游率:4800 确定	设置 设置 设置
遙信輸出延明 遙信常开常闭设置 湿度上印 湿度下印 温度上限:	设备地址:1 波	济率:4800 确定 查询	设置 设置 设置 设置 设置 设置
适信輸出延明 逐信常开常闭设置 湿度上印 湿度下印 温度上限: 温度下限:	2番地址:1 波	特率:4800 确定 查询 查询	 设置 设置 设置 设置 设置 设置 设置
适信輸出延明 通信常开常闭设置 湿度上印 湿度下印 温度上限: 温度下限: 湿度回差:	段备地址:1 波	特率:4800 确定 查询 	设置 设置 设置 设置 设置 设置 设置 设置 设置
遥信輸出延明 遥信常开常闭设置 湿度上印 湿度下印 温度上限: 温度下限: 湿度回差: 温度回差:	段备地址:1 波	济泰:4800 确定 查询 查询 查询 查询 查询	设置
适信輸出延明 運信常开常闭设量 湿度上印 湿度下印 温度上限: 温度下限: 温度可料: 温度回差: 湿度爛差:	段备地址:1 波	精率:4800 确定 查询 查询 查询 查询 查询 查询	设置 设置 设置 设置 设置 设置 设置 设置 设置
遥信輸出延明 遥信常开常闭设置 湿度上印 湿度上印 温度工限: 温度可差: 温度属偏差: 温度偏差:	会备地址:1 波	特率:4800 确定 查询 查询 查询 查询 查询 查询 查询 查询	设置 设置
遥信輸出延明 遥信常开常闭设置 湿度工作 湿度工作 温度工限: 温度工限: 温度回差: 温度偏差: 温度偏差:	段备地址:1 波	济泰: 4800 确定 查询 查询	设置 設置

Chapter 5 Communication Protocols

5.1 Basic communication parameters

code	Eight-bit binary				
data bit	Eight				
parity check b	not have				
stop bit	1 position				
error check	CRC (Redundant cyclic code)				
Baud rate	2400bit/s, 4800bit/s, 9600 bit/s can be set, and the default factory s etting is 4800bit/s				

5.2 Definition of data frame format

The Mod Bus-RTU communication protocol is adopted, and the format is as follows:

Initial structure time in bytes

Address code = 1 byte

Function code = 1 byte

Data area = N bytes

Error check = 16-bit CRC code

End the structure at a time of at least four bytes

Address code: The address of the transmitter, which is unique in the communication network (default 0x01 at the factory).

Function code: This product uses function codes 0x03,0x06,0x10, etc.

Data area: The data area is specific communication data. Note that the high byte of 16bits data is in front!

CRC code: a two-byte check code.

Host inquiry frame structure:

address co de	FC	Register starting address	register length	Check code l ow positio n	Check code hig h
1 byte	1 byte	2 bytes	2 bytes	1 byte	1 byte

From the machine response frame structure:

address c	FC	Number of	Data Zone	Second data	The N data ar	check code
ode		valid bytes	1	area	ea	check code
1 byte	1 byte	1 byte	2 bytes	2 bytes	2 bytes	2 bytes

5.3 Register address

Register address	PLC or configuration address	content	opera te	defined declaration
0000 Ц	40001 (base 10)	rate of water	read	Real-time water content (10 times
000011	40001 (base 10)	content	only	expanded)
0001 H	40002 (1 10)	temperature	read	Real-time temperature values (10
0001 H	40002 (base 10)	scale	only	times expanded)
0002 H	40002 (base 10)	aanduativity	read	Pool time conductivity value
0002 H	40003 (base 10)	conductivity	only	Real-time conductivity value
0003 H	40004 (base 10)	PH price	read	Real-time PH values (expanded by

			only	10 times)	
0004H	40005 (base 10)	Temporary	read-	The nitrogen content value or test	
		nitrogen	write	value written in ¹	
		content value			
0005H	40006 (base 10)	Temporary	read-	The phosphorus content value or	
		phosphorus	write	test value written in ²	
		content value			
0006H	40007 (base 10)	Potassium	read-	The potassium content value or test	
		content	write	value written in ³	
		provisional			
		value			
0007.11	40008 (here 10)	aclinity	read	Real-time salinity values (for	
0007 H	40008 (base 10)	sannity	only	reference only)	
0000 11	40000 (haaa 10)	Total dissolved	read	TDS real-time values (for reference	
0008 H	40009 (base 10)	solids TDS	only	only)	
		Conductivity	road	0.100 companyed to $0.0%$ 10.0%	
0022 H	40035 (base 10)	temperature	Ieau-	The default is 0.0%	
		coefficient	write		
0023 H	40036 (base 10)	Salinity	read-	0-100 corresponds to 0.00-1.00	
0023 11	40050 (base 10)	coefficient	write	default 55 (0.55)	
0024 H	40027 (base 10)	TDS	read-	0-100 corresponds to 0.00-1.00	
002411	40057 (base 10)	coefficient	write	default 5 0 (0.5)	
		Temperature	read		
0050 H	40081 (base 10)	calibration	write	Integers (expanded by 10 times)	
		value	write		
		Moisture			
0051 H	40082 (base 10)	content	read-	Integers (expanded by 10 times)	
005111	40082 (base 10)	calibration	write	integers (expanded by 10 times)	
		value			
		Conductivity	read-		
0052 H	40083 (base 10)	calibration	write	integer	
		value			
0053 H	4008 4 (base 10)	PH calibration	read-	integer	
		value	write		
		The nitrogen			
		content			
		temporary	read-		
0 4 E8 H	4 1257 (base 10)	storage value	write	floating number (IEEE754 Standard floating point)	
		coefficient is			
		high sixteen		(
		bits			
04E9H	4 1258 (base 10)	The nitrogen	read-		
	+ 1250 (base 10)	content	write		

	I	I				
		temporary				
		storage value				
		coefficient is				
		low sixteen bits				
		The deviation				
		value of the				
	4 1250 (here 10)	nitrogen	read-	. ,		
04EAH	4 1259 (base 10)	content	write	integer		
		temporary				
		storage value				
		The				
		phosphorus				
		content				
0.452.11	4.10(7.(1	temporary	read-			
0 4F2 H	4 1267 (base 10)	storage value	write			
		coefficient is				
		high sixteen				
		bits		floating number		
		The		(IEEE/54 Standard floating point)		
		phosphorus	read- write			
	4 1268 (base 10)	content				
0 4F3 H		temporary				
		storage value				
		coefficient is				
		low sixteen bits				
		The deviation				
		value of the				
		temporary	read-			
0 4F4 H	4 1269 (base 10)	storage value of	write	integer		
		phosphorus				
		content				
		The potassium				
	4 1277 (base 10)	content is				
		temporarily	read-			
0 4FC H		stored at a high	write			
		coefficient of				
		sixteen bits		floating number		
	4 1278 (base 10)	The temporary		(IEEE754 Standard floating point)		
		storage value				
0 175		coefficient of	read-			
0 4FD H		potassium	write			
		content is low				
		sixteen bits				
0 4FE H	4 1279 (base 10)	The deviation	read-	integer		
				0		

		value of the	write	
		temporary		
		storage value of		
		potassium		
		content		
07D0 H	42001 (base 10)	device address	read-	1.254 (factory default 1)
			write	1~254 (factory default 1)
07D1 H	42002 (base 10)	Device baud rate	read- write	0 represents 2400
				1 represents 4800
				2 represents 9600

When the 1:0004H register does not perform a write operation, the value in the register is fl (the measured conductivity). After the 0004H register performs a write operation, the register stores the written value.

When the 2:0005H register does not perform the write operation, the value in the register is f2 (the measured conductivity value). After the 0005H register performs the write operation, the register stores the written value.

When the 3:0006H register does not perform the write operation, the value in the register is f3 (the measured conductivity value). After the 0006H register is executed the write operation, the register stores the written value.

5.4 Example and explanation of communication protocol

For example, read the parameter value of the four-in-one device for conductivity,

temperature and moisture (address 0x01)

Inquiry frame							
address code	FC start address		DL	Check code low byte	Check code high byte		
0x 01	0x0 3	0x00 0x0 0	0x00 0x0 4	0x 44	0x 09		

acknowledgement frame								
addres s code	FC	Return valid Number of bytes	Moisture value	temperatur e scale	Conductivi ty value			check
						PH price		с
								0
							check	d
							code	e
							lower	high
							byte	b
								у
								t
							e	
0x 01	0x0 3	0x0 8	0x02 0x92	0xFF 0x9B	0x03 0xE8	0x00 0x38	0x57	0xB6

Temperature calculation:

When the temperature is below 0° , the temperature data is uploaded in the form of complement code. Temperature: FF9B H (hexadecimal) = -101 = Temperature = -10.1 °C

Water content calculation:

Moisture: 292 H (hexadecimal) = $658 \Rightarrow$ Humidity = 65.8%, that is, the soil volume water content 65.8%.

Conductivity calculation:

Conductivity: 3E8 H (hexadecimal) = 1000 Conductivity = 1000 μ S/cm

PH value calculation:

PH value: 38H (hexadecimal) =56 => PH value =5.6

Chapter 6 Common Problems and Solutions

6.1 Pay attention to no output or output error

probable cause:

- ① The computer has a COM port, and the selected port is not correct.
- 2, baud rate error.
- ③ The 485 bus is disconnected, or the A and B lines are connected in reverse.

(4) If the number of devices is too large or the wiring is too long, power supply should be provided nearby, add 48 5 enhancer, and add 120Ω terminal resistor at the same time.

- ⑤ The USB to 485 driver is not installed or damaged.
- 6. Equipment damage.