EN: This Datasheet is presented by the manufacturer. Please visit our website for pricing and availability at www.hestore.hu. SLFS023F - APRIL 1978 - REVISED MARCH 2003 - Two Precision Timing Circuits Per Package - Astable or Monostable Operation - TTL-Compatible Output Can Sink or Source Up To 150 mA - Active Pullup or Pulldown - Designed to Be Interchangeable With Signetics NE556, SA556, and SE556 - Applications Include: - Precision Timers From Microseconds to Hours - Pulse-Shaping Circuits - Missing-Pulse Detectors - Tone-Burst Generators - Pulse-Width Modulators - Pulse-Position Modulators - Sequential Timers - Pulse Generators - Frequency Dividers - Application Timers - Industrial Controls - Touch-Tone Encoders NE556...D, N, OR NS PACKAGE SA556...D OR N PACKAGE SE556...J PACKAGE (TOP VIEW) ### description/ordering information These devices provide two independent timing circuits of the NE555, SA555, or SE555 type in each package. These circuits can be operated in the astable or the monostable mode with external resistor-capacitor (RC) timing control. The basic timing provided by the RC time constant can be controlled actively by modulating the bias of the control-voltage input. The threshold (THRES) and trigger (TRIG) levels normally are two-thirds and one-third, respectively, of $V_{CC}$ . These levels can be altered by using the control-voltage (CONT) terminal. When the trigger input falls below trigger level, the flip-flop is set and the output goes high. If the trigger input is above the trigger level and the threshold input is above the threshold level, the flip-flop is reset, and the output is low. The reset (RESET) input can override all other inputs and can be used to initiate a new timing cycle. When RESET goes low, the flip-flop is reset and the output goes low. When the output is low, a low-impedance path is provided between the discharge (DISCH) terminal and ground (GND). #### **ORDERING INFORMATION** | TA | V <sub>T</sub> (MAX)<br>V <sub>CC</sub> = 15 V | PACKAGE <sup>†</sup> | | ORDERABLE<br>PART NUMBER | TOP-SIDE<br>MARKING | | |----------------|------------------------------------------------|----------------------|--------------|--------------------------|---------------------|--| | 0°C to 70°C | 11.2 V | PDIP (N) | Tube of 25 | NE556N | NE556N | | | | | SOIC (D) | Tube of 50 | NE556D | NE556 | | | | | | Reel of 2500 | NE556DR | NESSO | | | | | SOP (NS) | Reel of 2000 | NE556NSR | NE556 | | | –40°C to 85°C | 11.2 V | PDIP (N) | Tube of 25 | SA556N | SA556N | | | -55°C to 125°C | 10.6 V | CDID (I) | Tube of 25 | SE556J | SE556J | | | | | CDIP (J) | Tube of 25 | SE556JB | SE556JB | | † Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package. Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. # FUNCTION TABLE (each timer) | RESET | TRIGGER<br>VOLTAGE† | THRESHOLD<br>VOLTAGET | ОИТРИТ | DISCHARGE<br>SWITCH | | |-------|----------------------|-----------------------|---------------------------|---------------------|--| | Low | Irrelevant | Irrelevant | Low | On | | | High | <1/3 V <sub>DD</sub> | Irrelevant | High | Off | | | High | >1/3 V <sub>DD</sub> | >2/3 V <sub>DD</sub> | Low | On | | | High | >1/3 V <sub>DD</sub> | <2/3 V <sub>DD</sub> | As previously established | | | <sup>†</sup> Voltage levels shown are nominal. #### functional block diagram, each timer RESET can override TRIG, which can override THRES. ## absolute maximum ratings over operating free-air temperature range (unless otherwise noted)‡ | Supply voltage, V <sub>CC</sub> (see Note 1) | 18 V | |-------------------------------------------------------------------------------------|----------------| | Input voltage (CONT, RESET, THRES, and TRIG) | | | Output current | ±225 mA | | Package thermal impedance, $\theta_{JA}$ (see Notes 2 and 3): D package | 86°C/W | | N package | 80°C/W | | NS package | 76°C/W | | Package thermal impedance, $\theta_{JC}$ (see Notes 4 and 5): J package | 15.05°C/W | | Operating virtual junction temperature, T <sub>J</sub> | 150°C | | Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: J package | 300°C | | Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D, N, or NS package . | 260°C | | Storage temperature range, T <sub>stq</sub> | –65°C to 150°C | <sup>‡</sup> Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. - NOTES: 1. All voltage values are with respect to network ground terminal. - 2. Maximum power dissipation is a function of $T_J(max)$ , $\theta_{JA}$ , and $T_A$ . The maximum allowable power dissipation at any allowable ambient temperature is $P_D = (T_J(max) T_A)/\theta_{JA}$ . Operating at the absolute maximum $T_J$ of 150°C can affect reliability. - 3. The package thermal impedance is calculated in accordance with JESD 51-7. - 4. Maximum power dissipation is a function of $T_J(max)$ , $\theta_{JC}$ , and $T_C$ . The maximum allowable power dissipation at any allowable case temperature is $P_D = (T_J(max) T_C)/\theta_{JC}$ . Operating at the absolute maximum $T_J$ of 150°C can affect reliability. - 5. The package thermal impedance is calculated in accordance with MIL-STD-883. ## NE556, SA556, SE556 DUAL PRECISION TIMERS SLFS023F - APRIL 1978 - REVISED MARCH 2003 ## recommended operating conditions | VCC | Cumply voltage | NE556, SA556 | 4.5 | 16 | V | |-------------------------------------------------------------|--------------------------------|--------------|-----|------|----| | | Supply voltage | SE556 | 4.5 | 18 | V | | V <sub>I</sub> Input voltage (CONT, RESET, THRES, and TRIG) | | | | VCC | V | | lo | Output current | | | ±200 | mA | | TA | | NE556 | 0 | 70 | | | | Operating free-air temperature | SA556 | -40 | 85 | °C | | | SE556 | | | | | ## electrical characteristics, $V_{CC}$ = 5 V to 15 V, $T_A$ = 25°C (unless otherwise noted) | PARAMETER | | TEST CONDITIONS | | NE556<br>SA556 | | SE556 | | | UNIT | | | |----------------------------------------|------------------------------------|--------------------------------------------------------|-----------------------------------------------|----------------|------|-------|------|------|------|----------|--| | | | | | MIN | TYP | MAX | MIN | TYP | MAX | | | | V <sub>T</sub> Threshold voltage level | | V <sub>CC</sub> = 15 V | | 8.8 | 10 | 11.2 | 9.4 | 10 | 10.6 | | | | | | V <sub>CC</sub> = 5 V | | 2.4 | 3.3 | 4.2 | 2.7 | 3.3 | 4 | V | | | ΙΤ | Threshold current (see Note 6) | | | | 30 | 250 | | 30 | 250 | nA | | | | | V 45 V | | 4.5 | 5 | 5.6 | 4.8 | 5 | 5.2 | | | | \/ | Trigger veltage level | V <sub>CC</sub> = 15 V | $T_A = -55^{\circ}C \text{ to } 125^{\circ}C$ | | | | 3 | | 6 | V | | | VTRIG | Trigger voltage level | V22 - 5 V | | 1.1 | 1.67 | 2.2 | 1.45 | 1.67 | 1.9 | V | | | | | V <sub>CC</sub> = 5 V | $T_A = -55^{\circ}C \text{ to } 125^{\circ}C$ | | | | | - | 1.9 | | | | ITRIG | Trigger current | TRIG at 0 V | | | 0.5 | 2 | | 0.5 | 0.9 | μΑ | | | \/ | Decet voltage level | | | 0.3 | 0.7 | 1 | 0.3 | 0.7 | 1 | ٧ | | | VRESET | Reset voltage level | $T_A = -55^{\circ}C \text{ to } 12$ | 25°C | | | | | | 1.1 | V | | | 1 | Decet surrent | RESET at V <sub>CC</sub> | | | 0.1 | 0.4 | | 0.1 | 0.4 | <u> </u> | | | IRESET | Reset current | RESET at 0 V | | | -0.4 | 1.5 | | -0.4 | -1 | mA | | | IDISCH | Discharge switch off-state current | | | | 20 | 100 | | 20 | 100 | nA | | | | Control voltage<br>(open circuit) | V <sub>CC</sub> = 15 V | | 9 | 10 | 11 | 9.6 | 10 | 10.4 | V | | | | | | $T_A = -55^{\circ}C \text{ to } 125^{\circ}C$ | | | | 9.6 | | 10.4 | | | | <sup>V</sup> CONT | | V <sub>CC</sub> = 5 V | | 2.6 | 3.3 | 4 | 2.9 | 3.3 | 3.8 | | | | | | | $T_A = -55^{\circ}C \text{ to } 125^{\circ}C$ | | | | 2.9 | | 3.8 | | | | | | V <sub>CC</sub> = 15 V,<br>I <sub>OL</sub> = 10 mA | | | 0.1 | 0.25 | | 0.1 | 0.15 | | | | | | | T <sub>A</sub> = -55°C to 125°C | | | | | | 0.2 | | | | | | V <sub>CC</sub> = 15 V, | A | | 0.4 | 0.75 | | 0.4 | 0.5 | | | | | Low-level<br>output voltage | IOL = 50 mA | T <sub>A</sub> = -55°C to 125°C | | | | | | 1 | | | | | | V <sub>CC</sub> = 15 V, | - A - C - C - C - C - C - C - C - C - C | | 2 | 2.5 | | 2 | 2.2 | | | | | | I <sub>OL</sub> = 100 mA | T <sub>A</sub> = -55°C to 125°C | | | | | | 2.7 | V | | | VOL | | V <sub>CC</sub> = 15 V, | I <sub>OL</sub> = 200 mA | | 2.5 | | | 2.5 | | | | | | | V <sub>CC</sub> = 5 V,<br>I <sub>OL</sub> = 3.5 mA | T <sub>A</sub> = -55°C to 125°C | | | | | | 0.35 | | | | | | | | | 0.1 | 0.25 | | 0.1 | 0.15 | | | | | | $V_{CC} = 5 V$ ,<br>$I_{OL} = 5 mA$ | T <sub>A</sub> = -55°C to 125°C | | 0.1 | 0.23 | | 0.1 | 0.13 | 1 | | | | | V <sub>CC</sub> = 5 V, | I <sub>OL</sub> = 8 mA | | 0.15 | 0.3 | | 0.15 | 0.25 | | | | | | | IOL - O IIIA | 12.75 | 13.3 | 0.0 | 13 | 13.3 | 0.20 | | | | | | $V_{CC} = 15 \text{ V},$<br>$I_{OH} = -100 \text{ mA}$ | $T_A = -55^{\circ}C \text{ to } 125^{\circ}C$ | 12.73 | 13.3 | | 12 | 13.3 | | | | | \/ <b>\</b> 0.11 | High-level | | $I_{OH} = -200 \text{ mA}$ | | 12.5 | | 12 | 12.5 | | V | | | VOH | output voltage | V <sub>CC</sub> = 15 V, | 10H = -200 IIIA | 2.75 | 3.3 | | 3 | 3.3 | | v | | | | | $V_{CC} = 5 \text{ V},$<br>$I_{OH} = -100 \text{ mA}$ | $T_A = -55^{\circ}C \text{ to } 125^{\circ}C$ | 2.10 | ა.ა | | 2 | ა.ა | | 1 | | | | | Output low, No load | V <sub>CC</sub> = 15 V | | 20 | 30 | _ | 20 | 24 | | | | | | | V <sub>CC</sub> = 5 V | | 6 | 12 | | 6 | 10 | | | | ICC | Supply current | Output high, | V <sub>CC</sub> = 15 V | | 18 | 26 | | 18 | 20 | mA mA | | | | | | | | | | | | | | | | | | | V <sub>CC</sub> = 5 V | | 4 | 10 | | 4 | 8 | | | NOTE 6: This parameter influences the maximum value of the timing resistors $R_A$ and $R_B$ in the circuit of Figure 1. For example, when $V_{CC}$ = 5 V, the maximum value is $R_A$ = $R_A$ + $R_B$ $\approx$ 3.4 M $\Omega$ , and for $V_{CC}$ = 15 V, the maximum value is $R_A$ = 10 M $\Omega$ . ## operating characteristics, $V_{CC} = 5 \text{ V}$ and 15 V | PARAMETER | | TEST CONDITIONS† | NE556<br>SA556 | | SE556 | | UNIT | |--------------------------------------|-------------------------|--------------------------------------------------|----------------|-----|---------|------|--------| | | | | MIN TYP | MAX | MIN TYP | MAX | | | | Each timer, monostable§ | | 1 | 3 | 0.5 | 1.5* | | | Initial error<br>of timing interval‡ | Each timer, astable¶ | T <sub>A</sub> = 25°C | 2.25% | | 1.5% | | 1 | | or tilling lillerval+ | Timer 1–Timer 2 | | ±1 | | ±0.5 | | 1 | | Temperature | Each timer, monostable§ | | 50 | | 30 | 100* | ppm/°C | | coefficient | Each timer, astable¶ | $T_A = MIN \text{ to } MAX$ | 150 | | 90 | | | | of timing interval | Timer 1–Timer 2 | | ±10 | | ±10 | | | | Supply voltage | Each timer, monostable§ | | 0.1 | 0.5 | 0.05 | 0.2* | | | sensitivity of timing interval | Each timer, astable¶ | T <sub>A</sub> = 25°C | 0.3 | | 0.15 | | %/V | | | Timer 1–Timer 2 | ] | ±0.2 | | ±0.1 | | 1 | | Output-pulse rise time | | $C_L = 15 \text{ pF}, T_A = 25^{\circ}\text{C}$ | 100 | 300 | 100 | 200* | ns | | Output-pulse fall time | | $C_L = 15 \text{ pF}, T_A = 25^{\circ}\text{C}$ | 100 | 300 | 100 | 200* | ns | <sup>\*</sup> On products compliant to MIL-PRF-38535, this parameter is not production tested. #### **APPLICATION INFORMATION** NOTE A: Bypassing the control-voltage input to ground with a capacitor might improve operation. This should be evaluated for individual applications. evaluated for individual applications. Figure 1. Circuit for Astable Operation Figure 2. Circuit for Monostable Operation <sup>†</sup> For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. <sup>‡</sup> Timing-interval error is defined as the difference between the measured value and the average value of a random sample from each process run. $<sup>\</sup>S$ Values specified are for a device in a monostable circuit similar to Figure 2, with the following component values: $R_A = 2 k\Omega$ to $100 k\Omega$ , $C = 0.1 \mu F$ . <sup>¶</sup> Values specified are for a device in an astable circuit similar to Figure 1, with the following component values: R<sub>A</sub> = 1 kΩ to 100 kΩ, C = 0.1 μF. #### **IMPORTANT NOTICE** Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third—party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Mailing Address: Texas Instruments Post Office Box 655303 Dallas, Texas 75265 Copyright © 2003, Texas Instruments Incorporated